386 lines
9.1 KiB
C++
386 lines
9.1 KiB
C++
|
|
#include "SG_baseDataType.h"
|
|||
|
|
#include "SG_baseAlgo_Export.h"
|
|||
|
|
#include <vector>
|
|||
|
|
#ifdef __WIN32
|
|||
|
|
#include <corecrt_math_defines.h>
|
|||
|
|
#endif // __WIN32
|
|||
|
|
|
|||
|
|
#include <cmath>
|
|||
|
|
#include <unordered_map>
|
|||
|
|
#include <Eigen/dense>
|
|||
|
|
|
|||
|
|
void lineFitting(std::vector< SVzNL3DPoint>& inliers, double* _k, double* _b)
|
|||
|
|
{
|
|||
|
|
//<2F><>С<EFBFBD><D0A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֱ<EFBFBD>߲<EFBFBD><DFB2><EFBFBD>
|
|||
|
|
double xx_sum = 0;
|
|||
|
|
double x_sum = 0;
|
|||
|
|
double y_sum = 0;
|
|||
|
|
double xy_sum = 0;
|
|||
|
|
int num = 0;
|
|||
|
|
for (int i = 0; i < inliers.size(); i++)
|
|||
|
|
{
|
|||
|
|
x_sum += inliers[i].x; //x<><78><EFBFBD>ۼӺ<DBBC>
|
|||
|
|
y_sum += inliers[i].y; //y<><79><EFBFBD>ۼӺ<DBBC>
|
|||
|
|
xx_sum += inliers[i].x * inliers[i].x; //x<><78>ƽ<EFBFBD><C6BD><EFBFBD>ۼӺ<DBBC>
|
|||
|
|
xy_sum += inliers[i].x * inliers[i].y; //x<><78>y<EFBFBD><79><EFBFBD>ۼӺ<DBBC>
|
|||
|
|
num++;
|
|||
|
|
}
|
|||
|
|
*_k = (num * xy_sum - x_sum * y_sum) / (num * xx_sum - x_sum * x_sum); //<2F><><EFBFBD>ݹ<EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>k
|
|||
|
|
*_b = (-x_sum * xy_sum + xx_sum * y_sum) / (num * xx_sum - x_sum * x_sum);//<2F><><EFBFBD>ݹ<EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>b
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
//<2F><><EFBFBD>ϳ<EFBFBD>ͨ<EFBFBD><CDA8>ֱ<EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ax+by+c=0<><30><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֱ
|
|||
|
|
void lineFitting_abc(std::vector< SVzNL3DPoint>& inliers, double* _a, double* _b, double* _c)
|
|||
|
|
{
|
|||
|
|
//<2F>ж<EFBFBD><D0B6>Ƿ<EFBFBD>Ϊ<EFBFBD><CEAA>ֱ
|
|||
|
|
int dataSize = (int)inliers.size();
|
|||
|
|
if (dataSize < 2)
|
|||
|
|
return;
|
|||
|
|
|
|||
|
|
double deltaX = abs(inliers[0].x - inliers[dataSize - 1].x);
|
|||
|
|
double deltaY = abs(inliers[0].y - inliers[dataSize - 1].y);
|
|||
|
|
std::vector< SVzNL3DPoint> fittingData;
|
|||
|
|
if (deltaX < deltaY)
|
|||
|
|
{
|
|||
|
|
//x=ky+b <20><><EFBFBD><EFBFBD>
|
|||
|
|
for (int i = 0; i < dataSize; i++)
|
|||
|
|
{
|
|||
|
|
SVzNL3DPoint a_fitPt;
|
|||
|
|
a_fitPt.x = inliers[i].y;
|
|||
|
|
a_fitPt.y = inliers[i].x;
|
|||
|
|
a_fitPt.z = inliers[i].z;
|
|||
|
|
fittingData.push_back(a_fitPt);
|
|||
|
|
}
|
|||
|
|
double k = 0, b = 0;
|
|||
|
|
lineFitting(fittingData, &k, &b);
|
|||
|
|
//ax+by+c
|
|||
|
|
*_a = 1.0;
|
|||
|
|
*_b = -k;
|
|||
|
|
*_c = -b;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
//y = kx+b<><62><EFBFBD><EFBFBD>
|
|||
|
|
double k = 0, b = 0;
|
|||
|
|
lineFitting(inliers, &k, &b);
|
|||
|
|
//ax+by+c
|
|||
|
|
*_a = k;
|
|||
|
|
*_b = -1;
|
|||
|
|
*_c = b;
|
|||
|
|
}
|
|||
|
|
return;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
//Բ<><D4B2>С<EFBFBD><D0A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
double fitCircleByLeastSquare(
|
|||
|
|
const std::vector<SVzNL3DPoint>& pointArray,
|
|||
|
|
SVzNL3DPoint& center,
|
|||
|
|
double& radius)
|
|||
|
|
{
|
|||
|
|
int N = pointArray.size();
|
|||
|
|
if (N < 3) {
|
|||
|
|
return std::numeric_limits<double>::max();
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
double sumX = 0.0;
|
|||
|
|
double sumY = 0.0;
|
|||
|
|
double sumX2 = 0.0;
|
|||
|
|
double sumY2 = 0.0;
|
|||
|
|
double sumX3 = 0.0;
|
|||
|
|
double sumY3 = 0.0;
|
|||
|
|
double sumXY = 0.0;
|
|||
|
|
double sumXY2 = 0.0;
|
|||
|
|
double sumX2Y = 0.0;
|
|||
|
|
|
|||
|
|
for (int pId = 0; pId < N; ++pId) {
|
|||
|
|
sumX += pointArray[pId].x;
|
|||
|
|
sumY += pointArray[pId].y;
|
|||
|
|
|
|||
|
|
double x2 = pointArray[pId].x * pointArray[pId].x;
|
|||
|
|
double y2 = pointArray[pId].y * pointArray[pId].y;
|
|||
|
|
sumX2 += x2;
|
|||
|
|
sumY2 += y2;
|
|||
|
|
|
|||
|
|
sumX3 += x2 * pointArray[pId].x;
|
|||
|
|
sumY3 += y2 * pointArray[pId].y;
|
|||
|
|
sumXY += pointArray[pId].x * pointArray[pId].y;
|
|||
|
|
sumXY2 += pointArray[pId].x * y2;
|
|||
|
|
sumX2Y += x2 * pointArray[pId].y;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
double C, D, E, G, H;
|
|||
|
|
double a, b, c;
|
|||
|
|
|
|||
|
|
C = N * sumX2 - sumX * sumX;
|
|||
|
|
D = N * sumXY - sumX * sumY;
|
|||
|
|
E = N * sumX3 + N * sumXY2 - (sumX2 + sumY2) * sumX;
|
|||
|
|
G = N * sumY2 - sumY * sumY;
|
|||
|
|
H = N * sumX2Y + N * sumY3 - (sumX2 + sumY2) * sumY;
|
|||
|
|
|
|||
|
|
a = (H * D - E * G) / (C * G - D * D);
|
|||
|
|
b = (H * C - E * D) / (D * D - G * C);
|
|||
|
|
c = -(a * sumX + b * sumY + sumX2 + sumY2) / N;
|
|||
|
|
|
|||
|
|
center.x = -a / 2.0;
|
|||
|
|
center.y = -b / 2.0;
|
|||
|
|
radius = sqrt(a * a + b * b - 4 * c) / 2.0;
|
|||
|
|
|
|||
|
|
double err = 0.0;
|
|||
|
|
double e;
|
|||
|
|
double r2 = radius * radius;
|
|||
|
|
for (int pId = 0; pId < N; ++pId) {
|
|||
|
|
e = pow(pointArray[pId].x - center.x, 2) + pow(pointArray[pId].y - center.y, 2) - r2;
|
|||
|
|
if (e > err) {
|
|||
|
|
err = e;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
return err;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
#if 0
|
|||
|
|
bool leastSquareParabolaFit(const std::vector<cv::Point2d>& points,
|
|||
|
|
double& a, double& b, double& c,
|
|||
|
|
double& mse, double& max_err)
|
|||
|
|
{
|
|||
|
|
// У<><D0A3><EFBFBD>㼯<EFBFBD><E3BCAF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3<EFBFBD><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ߣ<EFBFBD>
|
|||
|
|
int n = points.size();
|
|||
|
|
if (n < 3) {
|
|||
|
|
return false;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ͳ<EFBFBD><CDB2><EFBFBD>
|
|||
|
|
double sum_x = 0.0, sum_x2 = 0.0, sum_x3 = 0.0, sum_x4 = 0.0;
|
|||
|
|
double sum_y = 0.0, sum_xy = 0.0, sum_x2y = 0.0;
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
for (const auto& p : points) {
|
|||
|
|
double x = p.x;
|
|||
|
|
double y = p.y;
|
|||
|
|
double x2 = x * x;
|
|||
|
|
double x3 = x2 * x;
|
|||
|
|
double x4 = x3 * x;
|
|||
|
|
|
|||
|
|
sum_x += x;
|
|||
|
|
sum_x2 += x2;
|
|||
|
|
sum_x3 += x3;
|
|||
|
|
sum_x4 += x4;
|
|||
|
|
sum_y += y;
|
|||
|
|
sum_xy += x * y;
|
|||
|
|
sum_x2y += x2 * y;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Է<EFBFBD><D4B7><EFBFBD><EFBFBD><EFBFBD> M * [a,b,c]^T = N
|
|||
|
|
// M<><4D><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3x3
|
|||
|
|
double M[3][3] = {
|
|||
|
|
{sum_x4, sum_x3, sum_x2},
|
|||
|
|
{sum_x3, sum_x2, sum_x},
|
|||
|
|
{sum_x2, sum_x, (double)n}
|
|||
|
|
};
|
|||
|
|
|
|||
|
|
// N<><4E><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3x1
|
|||
|
|
double N[3] = { sum_x2y, sum_xy, sum_y };
|
|||
|
|
|
|||
|
|
// <20><>˹<EFBFBD><CBB9>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Է<EFBFBD><D4B7><EFBFBD><EFBFBD>飨3Ԫһ<D4AA>η<EFBFBD><CEB7><EFBFBD><EFBFBD>飩
|
|||
|
|
// <20><><EFBFBD><EFBFBD>1<EFBFBD><31><EFBFBD><EFBFBD>Mת<4D><D7AA>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD>Ǿ<EFBFBD><C7BE><EFBFBD>
|
|||
|
|
for (int i = 0; i < 3; i++) {
|
|||
|
|
// ѡ<><D1A1>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ0<CEAA><30>
|
|||
|
|
int pivot = i;
|
|||
|
|
for (int j = i; j < 3; j++) {
|
|||
|
|
if (fabs(M[j][i]) > fabs(M[pivot][i])) {
|
|||
|
|
pivot = j;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
std::swap(M[i], M[pivot]);
|
|||
|
|
std::swap(N[i], N[pivot]);
|
|||
|
|
|
|||
|
|
// <20><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD>Ԫ<EFBFBD><D4AA>
|
|||
|
|
double div = M[i][i];
|
|||
|
|
if (fabs(div) < 1e-10) {
|
|||
|
|
return false;
|
|||
|
|
}
|
|||
|
|
for (int j = i; j < 3; j++) {
|
|||
|
|
M[i][j] /= div;
|
|||
|
|
}
|
|||
|
|
N[i] /= div;
|
|||
|
|
|
|||
|
|
// <20><>ȥ<EFBFBD>·<EFBFBD><C2B7><EFBFBD>
|
|||
|
|
for (int j = i + 1; j < 3; j++) {
|
|||
|
|
double factor = M[j][i];
|
|||
|
|
for (int k = i; k < 3; k++) {
|
|||
|
|
M[j][k] -= factor * M[i][k];
|
|||
|
|
}
|
|||
|
|
N[j] -= factor * N[i];
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD>2<EFBFBD><32><EFBFBD>ش<EFBFBD><D8B4><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
c = N[2];
|
|||
|
|
b = N[1] - M[1][2] * c;
|
|||
|
|
a = N[0] - M[0][1] * b - M[0][2] * c;
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
mse = 0.0;
|
|||
|
|
max_err = 0.0;
|
|||
|
|
for (const auto& p : points) {
|
|||
|
|
double y_fit = a * p.x * p.x + b * p.x + c;
|
|||
|
|
double err = y_fit - p.y;
|
|||
|
|
double err_abs = fabs(err);
|
|||
|
|
mse += err * err;
|
|||
|
|
if (err_abs > max_err) {
|
|||
|
|
max_err = err_abs;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
mse /= n; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
|
|||
|
|
return true;
|
|||
|
|
}
|
|||
|
|
#endif
|
|||
|
|
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С<EFBFBD><D0A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> y=ax^2 + bx + c
|
|||
|
|
bool leastSquareParabolaFitEigen(
|
|||
|
|
const std::vector<cv::Point2d>& points,
|
|||
|
|
double& a, double& b, double& c,
|
|||
|
|
double& mse, double& max_err)
|
|||
|
|
{
|
|||
|
|
int n = points.size();
|
|||
|
|
if (n < 3) {
|
|||
|
|
return false;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><41>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
|||
|
|
Eigen::MatrixXd A(n, 3);
|
|||
|
|
Eigen::VectorXd B(n);
|
|||
|
|
for (int i = 0; i < n; i++) {
|
|||
|
|
double x = points[i].x;
|
|||
|
|
A(i, 0) = x * x;
|
|||
|
|
A(i, 1) = x;
|
|||
|
|
A(i, 2) = 1.0;
|
|||
|
|
B(i) = points[i].y;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><>С<EFBFBD><D0A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>⣺Ax = B<><42>ֱ<EFBFBD>ӵ<EFBFBD><D3B5><EFBFBD>Eigen<65><6E><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
Eigen::Vector3d coeffs = A.bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(B);
|
|||
|
|
a = coeffs(0);
|
|||
|
|
b = coeffs(1);
|
|||
|
|
c = coeffs(2);
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
mse = 0.0;
|
|||
|
|
max_err = 0.0;
|
|||
|
|
for (const auto& p : points) {
|
|||
|
|
double y_fit = a * p.x * p.x + b * p.x + c;
|
|||
|
|
double err = y_fit - p.y;
|
|||
|
|
double err_abs = fabs(err);
|
|||
|
|
mse += err * err;
|
|||
|
|
if (err_abs > max_err) {
|
|||
|
|
max_err = err_abs;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
mse /= n;
|
|||
|
|
return true;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>: z = Ax + By + C
|
|||
|
|
//res: [0]=A, [1]= B, [2]=-1.0, [3]=C,
|
|||
|
|
void vzCaculateLaserPlane(std::vector<cv::Point3f> Points3ds, std::vector<double>& res)
|
|||
|
|
{
|
|||
|
|
//<2F><>С<EFBFBD><D0A1><EFBFBD>˷<EFBFBD><CBB7><EFBFBD><EFBFBD><EFBFBD>ƽ<EFBFBD><C6BD>
|
|||
|
|
//<2F><>ȡcv::Mat<61><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊx<CEAA>ᣬ<EFBFBD><E1A3AC><EFBFBD><EFBFBD>Ϊy<CEAA>ᣬ<EFBFBD><E1A3AC>cvPoint<6E><74><EFBFBD><EFBFBD><EFBFBD>෴
|
|||
|
|
//ϵ<><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
cv::Mat A = cv::Mat::zeros(3, 3, CV_64FC1);
|
|||
|
|
//
|
|||
|
|
cv::Mat B = cv::Mat::zeros(3, 1, CV_64FC1);
|
|||
|
|
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
cv::Mat X = cv::Mat::zeros(3, 1, CV_64FC1);
|
|||
|
|
double x2 = 0, xiyi = 0, xi = 0, yi = 0, zixi = 0, ziyi = 0, zi = 0, y2 = 0;
|
|||
|
|
for (int i = 0; i < Points3ds.size(); i++)
|
|||
|
|
{
|
|||
|
|
x2 += (double)Points3ds[i].x * (double)Points3ds[i].x;
|
|||
|
|
y2 += (double)Points3ds[i].y * (double)Points3ds[i].y;
|
|||
|
|
xiyi += (double)Points3ds[i].x * (double)Points3ds[i].y;
|
|||
|
|
xi += (double)Points3ds[i].x;
|
|||
|
|
yi += (double)Points3ds[i].y;
|
|||
|
|
zixi += (double)Points3ds[i].z * (double)Points3ds[i].x;
|
|||
|
|
ziyi += (double)Points3ds[i].z * (double)Points3ds[i].y;
|
|||
|
|
zi += (double)Points3ds[i].z;
|
|||
|
|
}
|
|||
|
|
A.at<double>(0, 0) = x2;
|
|||
|
|
A.at<double>(1, 0) = xiyi;
|
|||
|
|
A.at<double>(2, 0) = xi;
|
|||
|
|
A.at<double>(0, 1) = xiyi;
|
|||
|
|
A.at<double>(1, 1) = y2;
|
|||
|
|
A.at<double>(2, 1) = yi;
|
|||
|
|
A.at<double>(0, 2) = xi;
|
|||
|
|
A.at<double>(1, 2) = yi;
|
|||
|
|
A.at<double>(2, 2) = (double)((int)Points3ds.size());
|
|||
|
|
B.at<double>(0, 0) = zixi;
|
|||
|
|
B.at<double>(1, 0) = ziyi;
|
|||
|
|
B.at<double>(2, 0) = zi;
|
|||
|
|
//<2F><><EFBFBD><EFBFBD>ƽ<EFBFBD><C6BD>ϵ<EFBFBD><CFB5>
|
|||
|
|
X = A.inv() * B;
|
|||
|
|
//A
|
|||
|
|
res.push_back(X.at<double>(0, 0));
|
|||
|
|
//B
|
|||
|
|
res.push_back(X.at<double>(1, 0));
|
|||
|
|
//Z<><5A>ϵ<EFBFBD><CFB5>Ϊ-1
|
|||
|
|
res.push_back(-1.0);
|
|||
|
|
//C
|
|||
|
|
res.push_back(X.at<double>(2, 0));
|
|||
|
|
return;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/**
|
|||
|
|
* @brief <EFBFBD>ռ<EFBFBD>ֱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>С<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
* @param points <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ά<EFBFBD>㼯<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>2<EFBFBD><EFBFBD><EFBFBD>㣬<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>壩
|
|||
|
|
* @param center <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֱ<EFBFBD>ߵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>P0<EFBFBD><EFBFBD>
|
|||
|
|
* @param direction <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֱ<EFBFBD>ߵķ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>v<EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
* @return <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><EFBFBD>ɹ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>㼯<EFBFBD><EFBFBD>Ч<EFBFBD><EFBFBD><EFBFBD><EFBFBD>true<EFBFBD><EFBFBD>
|
|||
|
|
*/
|
|||
|
|
bool fitLine3DLeastSquares(const std::vector<SVzNL3DPoint>& points, SVzNL3DPoint& center, SVzNL3DPoint& direction)
|
|||
|
|
{
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD>㼯<EFBFBD><E3BCAF>Ч<EFBFBD><D0A7>
|
|||
|
|
if (points.size() < 2) {
|
|||
|
|
std::cerr << "Error: <20>㼯<EFBFBD><E3BCAF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><DAB5><EFBFBD>2<EFBFBD><32>" << std::endl;
|
|||
|
|
return false;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int n = points.size();
|
|||
|
|
Eigen::MatrixXd A(n, 3); // <20>㼯<EFBFBD><E3BCAF><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(x,y,z)
|
|||
|
|
|
|||
|
|
// 1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģ<EFBFBD>center<65><72>
|
|||
|
|
double cx = 0.0, cy = 0.0, cz = 0.0;
|
|||
|
|
for (const auto& p : points) {
|
|||
|
|
cx += p.x;
|
|||
|
|
cy += p.y;
|
|||
|
|
cz += p.z;
|
|||
|
|
A.row(points.size() - n) << p.x, p.y, p.z; // <20><><EFBFBD><EFBFBD><EFBFBD>㼯<EFBFBD><E3BCAF><EFBFBD><EFBFBD>
|
|||
|
|
n--;
|
|||
|
|
}
|
|||
|
|
cx /= points.size();
|
|||
|
|
cy /= points.size();
|
|||
|
|
cz /= points.size();
|
|||
|
|
center = { cx, cy, cz };
|
|||
|
|
|
|||
|
|
// 2. <20><><EFBFBD><EFBFBD>ȥ<EFBFBD><C8A5><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3x3<78><33>
|
|||
|
|
// <20>ؼ<EFBFBD><D8BC><EFBFBD><DEB8><EFBFBD>ʹ<EFBFBD><CAB9>RowVector3d<33><64><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>rowwise<73><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƥ<EFBFBD><C6A5>ά<EFBFBD><CEAC>
|
|||
|
|
Eigen::RowVector3d centroid_row(cx, cy, cz);
|
|||
|
|
Eigen::MatrixXd centered = A.rowwise() - centroid_row; // ά<><CEAC>ƥ<EFBFBD>䣬<EFBFBD>ޱ<EFBFBD><DEB1><EFBFBD>
|
|||
|
|
|
|||
|
|
// Э<><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>㣨n-1Ϊ<31><CEAA>ƫ<EFBFBD><C6AB><EFBFBD>ƣ<EFBFBD><C6A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҳ<EFBFBD><D2B2>ֱ<EFBFBD><D6B1><EFBFBD><EFBFBD>n<EFBFBD><6E>
|
|||
|
|
Eigen::Matrix3d cov = centered.transpose() * centered; // / (points.size() - 1);
|
|||
|
|
// 3. <20><><EFBFBD><EFBFBD>ֵ<EFBFBD>ֽ⣺<D6BD><E2A3BA>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver(cov);
|
|||
|
|
if (eigensolver.info() != Eigen::Success) {
|
|||
|
|
std::cerr << "Error: <20><><EFBFBD><EFBFBD>ֵ<EFBFBD>ֽ<EFBFBD>ʧ<EFBFBD>ܣ<EFBFBD>" << std::endl;
|
|||
|
|
return false;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>EigenĬ<6E>ϰ<EFBFBD><CFB0><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD>
|
|||
|
|
Eigen::Vector3d dir = eigensolver.eigenvectors().col(2);
|
|||
|
|
// <20><>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѡ<EFBFBD><D1A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD><EFBFBD><D7BC><EFBFBD><EFBFBD>
|
|||
|
|
dir.normalize();
|
|||
|
|
|
|||
|
|
direction = { dir(0), dir(1), dir(2) };
|
|||
|
|
return true;
|
|||
|
|
}
|