GrabBag/GrabBagApp/Presenter/Src/GrabBagPresenter.cpp

1032 lines
39 KiB
C++
Raw Normal View History

2025-06-08 12:48:04 +08:00
#include "GrabBagPresenter.h"
#include "VrError.h"
#include "VrLog.h"
2025-06-08 12:48:04 +08:00
#include <QtCore/QCoreApplication>
#include <QtCore/QFileInfo>
#include <QtCore/QDir>
#include <QtCore/QString>
#include <QtCore/QStandardPaths>
#include <QtCore/QFile>
#include <cmath>
#include <algorithm>
#include <QImage>
#include <QThread>
#include "VrTimeUtils.h"
#include "VrDateUtils.h"
#include "SG_bagPositioning_Export.h"
#include "SG_baseDataType.h"
#include "VrConvert.h"
#include "PointCloudImageUtils.h"
2025-06-08 12:48:04 +08:00
GrabBagPresenter::GrabBagPresenter()
: m_vrConfig(nullptr)
, m_pStatus(nullptr)
, m_pRobotProtocol(nullptr)
, m_bCameraConnected(false)
, m_bRobotConnected(false)
, m_currentWorkStatus(WorkStatus::Error)
2025-06-08 12:48:04 +08:00
{
}
GrabBagPresenter::~GrabBagPresenter()
{
// 停止算法检测线程
m_bAlgoDetectThreadRunning = false;
m_algoDetectCondition.notify_all();
// 释放缓存的检测数据
_ClearDetectionDataCache();
2025-06-08 12:48:04 +08:00
// 释放机械臂协议
if (m_pRobotProtocol) {
m_pRobotProtocol->Deinitialize();
delete m_pRobotProtocol;
m_pRobotProtocol = nullptr;
}
// 释放其他资源
for(auto it = m_vrEyeDeviceList.begin(); it != m_vrEyeDeviceList.end(); it++)
{
(*it)->CloseDevice();
delete (*it);
2025-06-08 12:48:04 +08:00
}
m_vrEyeDeviceList.clear();
2025-06-08 12:48:04 +08:00
}
int GrabBagPresenter::Init()
{
// 初始化连接状态
m_bCameraConnected = false;
m_currentWorkStatus = WorkStatus::InitIng;
m_pStatus->OnWorkStatusChanged(m_currentWorkStatus);
2025-06-08 12:48:04 +08:00
// 初始化VrConfig模块
IVrConfig::CreateInstance(&m_vrConfig);
// 设置配置改变通知回调
if (m_vrConfig) {
m_vrConfig->SetConfigChangeNotify(this);
}
2025-06-08 12:48:04 +08:00
// 获取配置文件路径
QString configPath = PathManager::GetConfigFilePath();
2025-06-08 12:48:04 +08:00
// 读取IP列表
ConfigResult configResult = m_vrConfig->LoadConfig(configPath.toStdString());
int nRet = SUCCESS;
2025-06-08 12:48:04 +08:00
// 初始化算法参数
nRet = InitAlgorithmParams();
if (nRet != 0) {
m_pStatus->OnStatusUpdate("算法参数初始化失败");
LOG_ERROR("Algorithm parameters initialization failed with error: %d\n", nRet);
} else {
m_pStatus->OnStatusUpdate("算法参数初始化成功");
LOG_INFO("Algorithm parameters initialization successful\n");
}
// 初始化机械臂协议
nRet = InitRobotProtocol();
if (nRet != 0) {
m_pStatus->OnStatusUpdate("机械臂服务初始化失败");
m_bRobotConnected = false;
} else {
m_pStatus->OnStatusUpdate("机械臂服务初始化成功");
}
2025-06-08 12:48:04 +08:00
// 通知UI相机个数
int cameraCount = configResult.cameraList.size();
m_pStatus->OnCameraCountChanged(cameraCount);
m_currentCameraIndex = cameraCount > 1 ? 2 : 1;
if(cameraCount > 0){
if (cameraCount >= 1) {
// 尝试打开相机1
2025-06-19 01:38:50 +08:00
LOG_INFO("Attempting to connect to camera 1 with IP: %s\n", configResult.cameraList[0].ip.c_str());
// 发送页面提示信息
m_pStatus->OnStatusUpdate(QString("正在连接相机一IP: %1").arg(configResult.cameraList[0].ip.c_str()).toStdString());
// 初始化VrEyeDevice模块
IVrEyeDevice* pDevice = nullptr;
IVrEyeDevice::CreateObject(&pDevice);
nRet = pDevice->InitDevice();
ERR_CODE_RETURN(nRet);
2025-06-08 12:48:04 +08:00
// 先设置状态回调
nRet = pDevice->SetStatusCallback(&GrabBagPresenter::_StaticCameraNotify, this);
ERR_CODE_RETURN(nRet);
// 再打开设备
nRet = pDevice->OpenDevice(configResult.cameraList[0].ip.c_str());
// 通过回调更新相机1状态
bool camera1Connected = (SUCCESS == nRet);
2025-06-19 01:38:50 +08:00
if(camera1Connected){
m_vrEyeDeviceList.push_back(pDevice);
2025-06-19 01:38:50 +08:00
LOG_INFO("Camera 1 connection successful, IP: %s\n", configResult.cameraList[0].ip.c_str());
m_pStatus->OnStatusUpdate(QString("相机一连接成功IP: %1").arg(configResult.cameraList[0].ip.c_str()).toStdString());
} else {
LOG_ERROR("Camera 1 connection failed, IP: %s, error code: %d\n", configResult.cameraList[0].ip.c_str(), nRet);
m_pStatus->OnStatusUpdate(QString("相机一连接失败IP: %1错误码: %2").arg(configResult.cameraList[0].ip.c_str()).arg(nRet).toStdString());
}
m_pStatus->OnCamera1StatusChanged(camera1Connected);
m_pStatus->OnStatusUpdate(camera1Connected ? "相机一连接成功" : "相机一连接失败");
m_bCameraConnected = camera1Connected;
}
else {
2025-06-19 01:38:50 +08:00
LOG_WARNING("Camera count is 0, setting camera 1 as disconnected\n");
m_pStatus->OnStatusUpdate("配置文件中未找到相机配置,设置相机一为离线状态");
m_pStatus->OnCamera1StatusChanged(false);
m_bCameraConnected = false;
}
if (cameraCount >= 2) {
IVrEyeDevice* pDevice = nullptr;
IVrEyeDevice::CreateObject(&pDevice);
nRet = pDevice->InitDevice();
ERR_CODE_RETURN(nRet);
// 先设置状态回调
nRet = pDevice->SetStatusCallback(&GrabBagPresenter::_StaticCameraNotify, this);
ERR_CODE_RETURN(nRet);
// 尝试打开相机2
nRet = pDevice->OpenDevice(configResult.cameraList[1].ip.c_str());
// 通过回调更新相机2状态
bool camera2Connected = (SUCCESS == nRet);
if(camera2Connected)
{
m_vrEyeDeviceList.push_back(pDevice);
}
m_pStatus->OnCamera2StatusChanged(camera2Connected);
m_pStatus->OnStatusUpdate(camera2Connected ? "相机二连接成功" : "相机二连接失败");
// 只要有一个相机连接成功就认为相机连接正常
if (camera2Connected) {
m_bCameraConnected = true;
}
}
else {
// 如果只有一个相机则将相机2状态设为未连接
m_pStatus->OnCamera2StatusChanged(false);
}
} else {
IVrEyeDevice* pDevice = nullptr;
IVrEyeDevice::CreateObject(&pDevice);
nRet = pDevice->InitDevice();
ERR_CODE_RETURN(nRet);
// 先设置状态回调
nRet = pDevice->SetStatusCallback(&GrabBagPresenter::_StaticCameraNotify, this);
ERR_CODE_RETURN(nRet);
2025-06-08 12:48:04 +08:00
// 尝试打开相机1
nRet = pDevice->OpenDevice(nullptr);
2025-06-08 12:48:04 +08:00
// 通过回调更新相机1状态
bool camera1Connected = (SUCCESS == nRet);
if(camera1Connected)
{
m_vrEyeDeviceList.push_back(pDevice);
}
m_pStatus->OnCamera1StatusChanged(camera1Connected);
m_pStatus->OnStatusUpdate(camera1Connected ? "相机一连接成功" : "相机一连接失败");
m_bCameraConnected = camera1Connected;
2025-06-08 12:48:04 +08:00
}
m_bAlgoDetectThreadRunning = true;
std::thread algoDetectThread(&GrabBagPresenter::_AlgoDetectThread, this);
algoDetectThread.detach();
2025-06-08 12:48:04 +08:00
m_pStatus->OnStatusUpdate("设备初始化完成");
CheckAndUpdateWorkStatus();
2025-06-08 12:48:04 +08:00
return SUCCESS;
}
// 初始化机械臂协议
int GrabBagPresenter::InitRobotProtocol()
{
LOG_DEBUG("Start initializing robot protocol\n");
2025-06-19 01:38:50 +08:00
m_pStatus->OnStatusUpdate("机械臂服务初始化...");
2025-06-08 12:48:04 +08:00
// 创建RobotProtocol实例
if(nullptr == m_pRobotProtocol){
m_pRobotProtocol = new RobotProtocol();
}
2025-06-19 01:38:50 +08:00
// 初始化协议服务使用端口502
int nRet = m_pRobotProtocol->Initialize(5020);
2025-06-19 01:38:50 +08:00
2025-06-08 12:48:04 +08:00
// 设置连接状态回调
m_pRobotProtocol->SetConnectionCallback([this](bool connected) {
this->OnRobotConnectionChanged(connected);
});
// 设置工作信号回调
m_pRobotProtocol->SetWorkSignalCallback([this](bool startWork, int cameraIndex) {
return this->OnRobotWorkSignal(startWork, cameraIndex);
2025-06-08 12:48:04 +08:00
});
2025-06-19 01:38:50 +08:00
LOG_INFO("Robot protocol initialization completed successfully\n");
return nRet;
2025-06-08 12:48:04 +08:00
}
// 初始化算法参数
int GrabBagPresenter::InitAlgorithmParams()
{
LOG_DEBUG("Start initializing algorithm parameters\n");
QString exePath = QCoreApplication::applicationFilePath();
// 初始化手眼标定矩阵为单位矩阵4x4变换矩阵
double initClibMatrix[16] = {
1.0, 0.0, 0.0, 0.0, // 第一行
0.0, 1.0, 0.0, 0.0, // 第二行
0.0, 0.0, 1.0, 0.0, // 第三行
0.0, 0.0, 0.0, 1.0 // 第四行
};
for (int i = 0; i < 16; i++) {
m_clibMatrix[i] = initClibMatrix[i];
}
// 获取手眼标定文件路径并确保文件存在
QString clibPath = PathManager::GetCalibrationFilePath();
LOG_INFO("Loading hand-eye calibration matrix from: %s\n", clibPath.toStdString().c_str());
if(QFile::exists(clibPath))
{
CVrConvert::LoadClibMatrix(clibPath.toStdString().c_str(), "clib", m_clibMatrix);
}
// 获取配置文件路径
QString configPath = PathManager::GetConfigFilePath();
LOG_INFO("Loading configuration from: %s\n", configPath.toStdString().c_str());
// 读取配置文件
ConfigResult configResult = m_vrConfig->LoadConfig(configPath.toStdString());
const VrAlgorithmParams& xmlParams = configResult.algorithmParams;
// 保存调试参数
m_debugParam = configResult.debugParam;
LOG_INFO("Loaded XML params - Bag: L=%.1f, W=%.1f, H=%.1f\n", xmlParams.bagParam.bagL, xmlParams.bagParam.bagW, xmlParams.bagParam.bagH);
LOG_INFO("Loaded XML params - Pile: L=%.1f, W=%.1f, H=%.1f\n",xmlParams.pileParam.pileL, xmlParams.pileParam.pileW, xmlParams.pileParam.pileH);
// 初始化算法参数结构
memset(&m_algoParam, 0, sizeof(SG_bagPositionParam));
// 设置编织袋参数
m_algoParam.bagParam.bagL = xmlParams.bagParam.bagL;
m_algoParam.bagParam.bagW = xmlParams.bagParam.bagW;
m_algoParam.bagParam.bagH = xmlParams.bagParam.bagH;
// 设置滤波参数
m_algoParam.filterParam.continuityTh = xmlParams.filterParam.continuityTh;
m_algoParam.filterParam.outlierTh = xmlParams.filterParam.outlierTh;
// 设置角点特征参数
m_algoParam.cornerParam.cornerTh = xmlParams.cornerParam.cornerTh;
m_algoParam.cornerParam.scale = xmlParams.cornerParam.scale;
m_algoParam.cornerParam.minEndingGap = xmlParams.cornerParam.minEndingGap;
m_algoParam.cornerParam.jumpCornerTh_1 = xmlParams.cornerParam.jumpCornerTh_1;
m_algoParam.cornerParam.jumpCornerTh_2 = xmlParams.cornerParam.jumpCornerTh_2;
// 设置增长参数
m_algoParam.growParam.maxLineSkipNum = xmlParams.growParam.maxLineSkipNum;
m_algoParam.growParam.yDeviation_max = xmlParams.growParam.yDeviation_max;
m_algoParam.growParam.maxSkipDistance = xmlParams.growParam.maxSkipDistance;
m_algoParam.growParam.zDeviation_max = xmlParams.growParam.zDeviation_max;
m_algoParam.growParam.minLTypeTreeLen = xmlParams.growParam.minLTypeTreeLen;
m_algoParam.growParam.minVTypeTreeLen = xmlParams.growParam.minVTypeTreeLen;
// 设置平面校准参数(保存所有相机的配置)
m_cameraCalibParams = xmlParams.planeCalibParam.cameraCalibParams;
LOG_INFO("Algorithm parameters initialized successfully:\n");
LOG_INFO(" Bag: L=%.1f, W=%.1f, H=%.1f\n", m_algoParam.bagParam.bagL, m_algoParam.bagParam.bagW, m_algoParam.bagParam.bagH);
LOG_INFO(" Filter: continuityTh=%.1f, outlierTh=%d\n", m_algoParam.filterParam.continuityTh, m_algoParam.filterParam.outlierTh);
// 循环打印所有相机的调平参数
LOG_INFO("Loading plane calibration parameters for all cameras:\n");
for (const auto& cameraParam : m_cameraCalibParams) {
LOG_INFO("Camera %d (%s) calibration parameters:\n",
cameraParam.cameraIndex, cameraParam.cameraName.c_str());
LOG_INFO(" Is calibrated: %s\n", cameraParam.isCalibrated ? "YES" : "NO");
LOG_INFO(" Plane height: %.3f\n", cameraParam.planeHeight);
LOG_INFO(" Plane calibration matrix:\n");
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[0], cameraParam.planeCalib[1], cameraParam.planeCalib[2]);
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[3], cameraParam.planeCalib[4], cameraParam.planeCalib[5]);
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[6], cameraParam.planeCalib[7], cameraParam.planeCalib[8]);
LOG_INFO(" Inverse rotation matrix:\n");
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[0], cameraParam.invRMatrix[1], cameraParam.invRMatrix[2]);
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[3], cameraParam.invRMatrix[4], cameraParam.invRMatrix[5]);
LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[6], cameraParam.invRMatrix[7], cameraParam.invRMatrix[8]);
LOG_INFO(" --------------------------------\n");
}
return SUCCESS;
}
2025-06-08 12:48:04 +08:00
// 机械臂协议回调函数实现
void GrabBagPresenter::OnRobotConnectionChanged(bool connected)
{
LOG_INFO("Robot connection status changed: %s\n", (connected ? "connected" : "disconnected"));
// 更新机械臂连接状态
m_bRobotConnected = connected;
2025-06-08 12:48:04 +08:00
if (m_pStatus) {
m_pStatus->OnRobotConnectionChanged(connected);
2025-06-19 01:38:50 +08:00
// 发送详细的页面状态信息
if (connected) {
m_pStatus->OnStatusUpdate("机械臂连接成功,通信正常");
} else {
m_pStatus->OnStatusUpdate("机械臂连接断开,请检查网络连接");
}
2025-06-08 12:48:04 +08:00
}
// 检查并更新工作状态
CheckAndUpdateWorkStatus();
2025-06-08 12:48:04 +08:00
}
bool GrabBagPresenter::OnRobotWorkSignal(bool startWork, int cameraIndex)
2025-06-08 12:48:04 +08:00
{
LOG_INFO("Received robot work signal: %s for camera index: %d\n", (startWork ? "start work" : "stop work"), cameraIndex);
2025-06-08 12:48:04 +08:00
int nRet = SUCCESS;
2025-06-08 12:48:04 +08:00
if (startWork) {
QString message = QString("收到开始工作信号,启动相机 %1 检测").arg(cameraIndex);
if (nullptr != m_pStatus) {
m_pStatus->OnStatusUpdate(message.toStdString());
}
nRet = StartDetection(cameraIndex);
2025-06-08 12:48:04 +08:00
} else {
QString message = QString("收到停止工作信号,停止相机 %1 检测").arg(cameraIndex);
if (nullptr != m_pStatus) {
m_pStatus->OnStatusUpdate(message.toStdString());
}
nRet = StopDetection();
2025-06-08 12:48:04 +08:00
}
return nRet == SUCCESS;
2025-06-08 12:48:04 +08:00
}
void GrabBagPresenter::SetStatusCallback(IYGrabBagStatus* status)
{
m_pStatus = status;
}
// 模拟检测函数,用于演示
int GrabBagPresenter::StartDetection(int cameraIndex, bool isAuto)
2025-06-08 12:48:04 +08:00
{
LOG_INFO("--------------------------------\n");
LOG_INFO("Start detection with camera index: %d\n", cameraIndex);
2025-06-08 12:48:04 +08:00
// 检查设备状态是否准备就绪
if (isAuto && m_currentWorkStatus != WorkStatus::Ready) {
LOG_INFO("Device not ready, cannot start detection\n");
if (m_pStatus) {
m_pStatus->OnStatusUpdate("设备未准备就绪,无法开始检测");
}
return ERR_CODE(DEV_BUSY);
}
// 保存当前使用的相机ID从1开始编号
m_currentCameraIndex = cameraIndex;
2025-06-08 12:48:04 +08:00
// 通知UI工作状态变更为"正在工作"
if (m_pStatus) {
m_currentWorkStatus = WorkStatus::Working;
2025-06-08 12:48:04 +08:00
m_pStatus->OnWorkStatusChanged(WorkStatus::Working);
}
// 设置机械臂工作状态为忙碌
if (m_pRobotProtocol) {
m_pRobotProtocol->SetWorkStatus(RobotProtocol::WORK_STATUS_BUSY);
}
2025-06-08 12:48:04 +08:00
if(m_vrEyeDeviceList.empty()){
LOG_ERROR("No camera device found\n");
if (m_pStatus) {
m_pStatus->OnStatusUpdate("未找到相机设备");
}
return ERR_CODE(DEV_NOT_FIND);
}
// 清空检测数据缓存(释放之前的内存)
_ClearDetectionDataCache();
int nRet = SUCCESS;
// 根据参数决定启动哪些相机
// 启动指定相机cameraIndex为相机ID从1开始编号
int arrayIndex = cameraIndex - 1; // 转换为数组索引从0开始
if (arrayIndex >= 0 && arrayIndex < static_cast<int>(m_vrEyeDeviceList.size())) {
nRet = m_vrEyeDeviceList[arrayIndex]->StartDetect(&GrabBagPresenter::_StaticDetectionCallback, this);
if (nRet == SUCCESS) {
LOG_INFO("Camera ID %d start detection success\n", cameraIndex);
m_pStatus->OnStatusUpdate(QString("启动相机 %1 检测成功").arg(cameraIndex).toStdString());
} else {
LOG_ERROR("Camera ID %d start detection failed with error: %d\n", cameraIndex, nRet);
m_pStatus->OnStatusUpdate(QString("启动相机 %1 检测失败").arg(cameraIndex).toStdString());
}
} else {
LOG_ERROR("Invalid camera ID: %d, valid range is 1-%zu\n", cameraIndex, m_vrEyeDeviceList.size());
m_pStatus->OnStatusUpdate(QString("无效的相机ID: %1有效范围: 1-%2").arg(cameraIndex).arg(m_vrEyeDeviceList.size()).toStdString());
nRet = ERR_CODE(DEV_NOT_FIND);
}
return nRet;
}
int GrabBagPresenter::StopDetection()
{
LOG_INFO("Stop detection\n");
// 停止所有相机的检测
for (size_t i = 0; i < m_vrEyeDeviceList.size(); ++i) {
IVrEyeDevice* pDevice = m_vrEyeDeviceList[i];
if (pDevice) {
int ret = pDevice->StopDetect();
if (ret == 0) {
LOG_INFO("Camera %zu stop detection successfully\n", i + 1);
} else {
LOG_WARNING("Camera %zu stop detection failed, error code: %d\n", i + 1, ret);
}
}
}
// 通知UI工作状态变更为"就绪"(如果设备连接正常)
if (m_pStatus) {
// 检查设备连接状态,决定停止后的状态
if (m_bCameraConnected && m_bRobotConnected) {
m_currentWorkStatus = WorkStatus::Ready;
m_pStatus->OnWorkStatusChanged(WorkStatus::Ready);
} else {
m_currentWorkStatus = WorkStatus::Error;
m_pStatus->OnWorkStatusChanged(WorkStatus::Error);
}
m_pStatus->OnStatusUpdate("检测已停止");
}
// 设置机械臂工作状态为空闲
if (m_pRobotProtocol) {
m_pRobotProtocol->SetWorkStatus(RobotProtocol::WORK_STATUS_IDLE);
}
return 0;
}
// 加载调试数据进行检测
int GrabBagPresenter::LoadDebugDataAndDetect(const std::string& filePath)
{
LOG_INFO("Loading debug data from file: %s\n", filePath.c_str());
m_currentWorkStatus = WorkStatus::Working;
if (m_pStatus) {
m_pStatus->OnWorkStatusChanged(WorkStatus::Working);
m_pStatus->OnStatusUpdate(QString("正加载: %1").arg(QString::fromStdString(filePath)).toStdString());
}
// 设置机械臂工作状态为忙碌
if (m_pRobotProtocol) {
m_pRobotProtocol->SetWorkStatus(RobotProtocol::WORK_STATUS_BUSY);
}
int lineNum = 0;
float scanSpeed = 0.0f;
int maxTimeStamp = 0;
int clockPerSecond = 0;
int result = SUCCESS;
// 清空现有的检测数据缓存
_ClearDetectionDataCache();
{
std::lock_guard<std::mutex> lock(m_detectionDataMutex);
result = m_dataLoader.LoadLaserScanData(filePath, m_detectionDataCache, lineNum, scanSpeed, maxTimeStamp, clockPerSecond);
}
if (result != SUCCESS) {
LOG_ERROR("Failed to load debug data: %s\n", m_dataLoader.GetLastError().c_str());
if (m_pStatus) {
m_pStatus->OnStatusUpdate("调试数据加载失败: " + m_dataLoader.GetLastError());
}
return result;
}
LOG_INFO("Successfully loaded %d lines of debug data\n", lineNum);
if (m_pStatus) {
m_pStatus->OnStatusUpdate(QString("成功加载 %1 行调试数据").arg(lineNum).toStdString());
}
// 等待检测完成(这里可以考虑异步处理)
// 为了简化,这里直接调用检测任务
result = _DetectTask();
// 释放加载的数据
m_dataLoader.FreeLaserScanData(m_detectionDataCache);
return result;
}
IVrEyeDevice *GrabBagPresenter::GetEyeDevice(int index)
{
if(m_vrEyeDeviceList.size() <= index) return nullptr;
return m_vrEyeDeviceList[index];
}
// 获取所有相机设备列表
std::vector<IVrEyeDevice*> GrabBagPresenter::GetCameraList()
{
return m_vrEyeDeviceList;
}
// 获取相机数量
int GrabBagPresenter::GetCameraCount()
{
return static_cast<int>(m_vrEyeDeviceList.size());
}
// 获取相机列表和名称
void GrabBagPresenter::GetCameraListWithNames(std::vector<IVrEyeDevice*>& cameraList, std::vector<QString>& cameraNames)
{
cameraList.clear();
cameraNames.clear();
for (size_t i = 0; i < m_vrEyeDeviceList.size(); i++) {
if (m_vrEyeDeviceList[i] != nullptr) {
cameraList.push_back(m_vrEyeDeviceList[i]);
cameraNames.push_back(QString("相机 %1").arg(i + 1));
}
}
}
// 检查指定索引的相机是否连接
bool GrabBagPresenter::IsCameraConnected(int index)
{
if (index < 0 || index >= static_cast<int>(m_vrEyeDeviceList.size())) {
return false;
}
IVrEyeDevice* pDevice = m_vrEyeDeviceList[index];
return (pDevice != nullptr);
}
// 为所有相机设置状态回调
void GrabBagPresenter::SetCameraStatusCallback(VzNL_OnNotifyStatusCBEx fNotify, void* param)
{
for (size_t i = 0; i < m_vrEyeDeviceList.size(); i++) {
IVrEyeDevice* pDevice = m_vrEyeDeviceList[i];
if (pDevice) {
pDevice->SetStatusCallback(fNotify, param);
LOG_DEBUG("Status callback set for camera %zu\n", i + 1);
}
}
}
// 静态回调函数实现
void GrabBagPresenter::_StaticCameraNotify(EVzDeviceWorkStatus eStatus, void* pExtData, unsigned int nDataLength, void* pInfoParam)
{
// 从pInfoParam获取this指针转换回GrabBagPresenter*类型
GrabBagPresenter* pThis = reinterpret_cast<GrabBagPresenter*>(pInfoParam);
if (pThis)
{
// 调用实例的非静态成员函数
pThis->_CameraNotify(eStatus, pExtData, nDataLength, pInfoParam);
}
}
void GrabBagPresenter::_CameraNotify(EVzDeviceWorkStatus eStatus, void *pExtData, unsigned int nDataLength, void *pInfoParam)
{
LOG_DEBUG("[Camera Notify] received: status=%d\n", (int)eStatus);
switch (eStatus) {
case EVzDeviceWorkStatus::keDeviceWorkStatus_Offline:
{
LOG_WARNING("[Camera Notify] Camera device offline/disconnected\n");
// 更新相机连接状态
m_bCameraConnected = false;
// 通知UI相机状态变更
if (m_pStatus) {
// 这里需要判断是哪个相机离线暂时更新相机1状态
// 实际应用中可能需要通过pInfoParam或其他方式区分具体哪个相机
m_pStatus->OnCamera1StatusChanged(false);
m_pStatus->OnStatusUpdate("相机设备离线");
}
// 检查并更新工作状态
CheckAndUpdateWorkStatus();
break;
}
case EVzDeviceWorkStatus::keDeviceWorkStatus_Eye_Reconnect:
{
LOG_INFO("[Camera Notify] Camera device online/connected\n");
// 更新相机连接状态
m_bCameraConnected = true;
// 通知UI相机状态变更
if (m_pStatus) {
m_pStatus->OnCamera1StatusChanged(true);
m_pStatus->OnStatusUpdate("相机设备已连接");
}
// 检查并更新工作状态
CheckAndUpdateWorkStatus();
break;
}
case EVzDeviceWorkStatus::keDeviceWorkStatus_Device_Swing_Finish:
{
LOG_INFO("[Camera Notify] Received scan finish signal from camera\n");
2025-06-19 01:38:50 +08:00
// 发送页面提示信息
if (m_pStatus) {
m_pStatus->OnStatusUpdate("相机扫描完成,开始数据处理...");
}
// 通知检测线程开始处理
m_algoDetectCondition.notify_one();
break;
}
default:
break;
}
}
// 检测数据回调函数静态版本
void GrabBagPresenter::_StaticDetectionCallback(EVzResultDataType eDataType, SVzLaserLineData* pLaserLinePoint, void* pUserData)
{
GrabBagPresenter* pThis = reinterpret_cast<GrabBagPresenter*>(pUserData);
if (pThis && pLaserLinePoint) {
pThis->_DetectionCallback(eDataType, pLaserLinePoint);
}
}
// 检测数据回调函数实例版本
void GrabBagPresenter::_DetectionCallback(EVzResultDataType eDataType, SVzLaserLineData* pLaserLinePoint)
{
if (!pLaserLinePoint) {
LOG_WARNING("[Detection Callback] pLaserLinePoint is null\n");
return;
}
if (pLaserLinePoint->nPointCount <= 0) {
LOG_WARNING("[Detection Callback] Point count is zero or negative: %d\n", pLaserLinePoint->nPointCount);
return;
}
if (!pLaserLinePoint->p3DPoint) {
LOG_WARNING("[Detection Callback] p3DPoint is null\n");
return;
}
// 转换数据格式从SVzLaserLineData转换为SVzNL3DLaserLine并存储到缓存
SVzNL3DLaserLine laser3DLine;
// 复制基本信息
laser3DLine.nTimeStamp = pLaserLinePoint->llTimeStamp;
laser3DLine.nPositionCnt = pLaserLinePoint->nPointCount;
// 分配和复制点云数据
laser3DLine.p3DPosition = new SVzNL3DPosition[pLaserLinePoint->nPointCount];
// 复制点云数据
memcpy(laser3DLine.p3DPosition, pLaserLinePoint->p3DPoint, sizeof(SVzNL3DPosition) * pLaserLinePoint->nPointCount);
// 将转换后的数据保存到缓存中
std::lock_guard<std::mutex> lock(m_detectionDataMutex);
m_detectionDataCache.push_back(laser3DLine);
}
void GrabBagPresenter::CheckAndUpdateWorkStatus()
{
if (m_bCameraConnected && m_bRobotConnected) {
m_currentWorkStatus = WorkStatus::Ready;
m_pStatus->OnWorkStatusChanged(WorkStatus::Ready);
} else {
m_currentWorkStatus = WorkStatus::Error;
m_pStatus->OnWorkStatusChanged(WorkStatus::Error);
}
}
void GrabBagPresenter::_AlgoDetectThread()
{
while(m_bAlgoDetectThreadRunning)
{
std::unique_lock<std::mutex> lock(m_algoDetectMutex);
m_algoDetectCondition.wait(lock, [this]() {
return m_currentWorkStatus == WorkStatus::Working;
});
// 检查设备状态是否准备就绪
int nRet = _DetectTask();
if(nRet != SUCCESS){
m_currentWorkStatus = WorkStatus::Error;
if(m_pStatus){
m_pStatus->OnWorkStatusChanged(m_currentWorkStatus);
}
}
}
}
int GrabBagPresenter::_DetectTask()
{
LOG_INFO("[Algo Thread] Start real detection task using algorithm\n");
// 1. 获取缓存的点云数据
if (m_detectionDataCache.empty()) {
LOG_WARNING("No cached detection data available\n");
if (m_pStatus) {
m_pStatus->OnStatusUpdate("无缓存的检测数据");
}
return ERR_CODE(DEV_DATA_INVALID);
}
// 2. 准备算法输入数据
if(m_pStatus){
m_pStatus->OnStatusUpdate("扫描线数:" + std::to_string(m_detectionDataCache.size()) + ",正在进行算法检测...");
}
if(m_debugParam.savePointCloud){
LOG_INFO("[Algo Thread] Debug mode is enabled\n");
// 获取当前时间戳格式为YYYYMMDDHHMMSS
std::string timeStamp = CVrDateUtils::GetNowTime();
std::string fileName = m_debugParam.debugOutputPath + "/pointCloud_" + timeStamp + ".txt";
m_dataLoader.SaveLaserScanData(fileName, m_detectionDataCache, m_detectionDataCache.size(), 0.0, 0, 0);
}
// 3. 使用成员变量算法参数已在初始化时从XML读取
LOG_INFO("[Algo Thread] Using algorithm parameters from XML configuration\n");
LOG_INFO(" Bag: L=%.1f, W=%.1f, H=%.1f\n",m_algoParam.bagParam.bagL, m_algoParam.bagParam.bagW, m_algoParam.bagParam.bagH);
LOG_INFO(" Filter: continuityTh=%.1f, outlierTh=%d\n", m_algoParam.filterParam.continuityTh, m_algoParam.filterParam.outlierTh);
CVrTimeUtils oTimeUtils;
// 4. 根据当前相机索引获取对应的调平参数
SSG_planeCalibPara currentCameraCalibParam = _GetCameraCalibParam(m_currentCameraIndex);
LOG_INFO("[Algo Thread] Using camera %d calibration parameters:\n", m_currentCameraIndex);
LOG_INFO(" Plane height: %.3f\n", currentCameraCalibParam.planeHeight);
LOG_INFO(" Plane calibration matrix: [%.3f, %.3f, %.3f; %.3f, %.3f, %.3f; %.3f, %.3f, %.3f]\n",
currentCameraCalibParam.planeCalib[0], currentCameraCalibParam.planeCalib[1], currentCameraCalibParam.planeCalib[2],
currentCameraCalibParam.planeCalib[3], currentCameraCalibParam.planeCalib[4], currentCameraCalibParam.planeCalib[5],
currentCameraCalibParam.planeCalib[6], currentCameraCalibParam.planeCalib[7], currentCameraCalibParam.planeCalib[8]);
// 5. 数据预处理:调平和去除地面(使用当前相机的调平参数)
for (size_t i = 0; i < m_detectionDataCache.size(); i++) {
sg_lineDataR(&m_detectionDataCache[i], currentCameraCalibParam.planeCalib, currentCameraCalibParam.planeHeight);
}
// 6. 调用算法检测接口(使用当前相机的调平参数)
std::vector<SSG_peakRgnInfo> objOps;
sg_getBagPosition(static_cast<SVzNL3DLaserLine*>(m_detectionDataCache.data()), m_detectionDataCache.size(), m_algoParam, currentCameraCalibParam, objOps);
LOG_INFO("[Algo Thread] sg_getBagPosition detected %zu objects time : %.2f ms\n", objOps.size(), oTimeUtils.GetElapsedTimeInMilliSec());
// 7. 转换检测结果为UI显示格式
DetectionResult detectionResult;
// 设置当前相机索引
detectionResult.cameraIndex = m_currentCameraIndex;
// 从点云数据生成投影图像
detectionResult.image = PointCloudImageUtils::GeneratePointCloudImage(static_cast<SVzNL3DLaserLine*>(m_detectionDataCache.data()),
m_detectionDataCache.size(), objOps);
// 转换检测结果为UI显示格式使用机械臂坐标系数据
for (size_t i = 0; i < objOps.size(); i++) {
const SSG_peakRgnInfo& obj = objOps[i];
// 进行坐标转换:从算法坐标系转换到机械臂坐标系
SVzNL3DPoint targetObj;
targetObj.x = obj.centerPos.x;
targetObj.y = obj.centerPos.y;
targetObj.z = obj.centerPos.z;
SVzNL3DPoint robotObj;
CVrConvert::EyeToRobot(targetObj, robotObj, m_clibMatrix);
// 创建位置数据(使用转换后的机械臂坐标)
GrabBagPosition pos;
pos.x = robotObj.x; // 机械臂坐标X
pos.y = robotObj.y; // 机械臂坐标Y
pos.z = robotObj.z; // 机械臂坐标Z
pos.roll = obj.centerPos.x_roll; // 保持原有姿态角
pos.pitch = obj.centerPos.y_pitch; // 保持原有姿态角
pos.yaw = obj.centerPos.z_yaw; // 保持原有偏航角
detectionResult.positions.push_back(pos);
LOG_INFO("[Algo Thread] Object %zu Eye Coords: X=%.2f, Y=%.2f, Z=%.2f\n",
i, obj.centerPos.x, obj.centerPos.y, obj.centerPos.z);
LOG_INFO("[Algo Thread] Object %zu Robot Coords: X=%.2f, Y=%.2f, Z=%.2f, Roll=%.2f, Pitch=%.2f, Yaw=%.2f\n",
i, pos.x, pos.y, pos.z, pos.roll, pos.pitch, pos.yaw);
}
// 8. 返回检测结果
// 调用检测结果回调函数
m_pStatus->OnDetectionResult(detectionResult);
// 更新状态
QString statusMsg = QString("检测完成,发现%1个目标").arg(objOps.size());
m_pStatus->OnStatusUpdate(statusMsg.toStdString());
// 更新机械臂协议状态(发送转换后的目标位置数据)
_SendDetectionResultToRobot(detectionResult, m_currentCameraIndex);
// 9. 检测完成后,将工作状态更新为"完成"
2025-06-08 12:48:04 +08:00
if (m_pStatus) {
m_currentWorkStatus = WorkStatus::Completed;
2025-06-08 12:48:04 +08:00
m_pStatus->OnWorkStatusChanged(WorkStatus::Completed);
}
// 设置机械臂工作状态为相应相机工作完成相机ID从1开始
if (m_pRobotProtocol) {
uint16_t workStatus = (m_currentCameraIndex == 1) ?
RobotProtocol::WORK_STATUS_CAMERA1_DONE :
RobotProtocol::WORK_STATUS_CAMERA2_DONE;
m_pRobotProtocol->SetWorkStatus(workStatus);
}
// 恢复到就绪状态
m_currentWorkStatus = WorkStatus::Ready;
return SUCCESS;
}
// 释放缓存的检测数据
void GrabBagPresenter::_ClearDetectionDataCache()
{
std::lock_guard<std::mutex> lock(m_detectionDataMutex);
LOG_DEBUG("Clearing detection data cache, current size: %zu\n", m_detectionDataCache.size());
// 释放缓存的内存
for (auto& cachedLine : m_detectionDataCache) {
if (cachedLine.p3DPosition) {
delete[] cachedLine.p3DPosition;
cachedLine.p3DPosition = nullptr;
}
}
// 清空缓存容器
m_detectionDataCache.clear();
LOG_DEBUG("Detection data cache cleared successfully\n");
}
// 发送检测结果给机械臂
void GrabBagPresenter::_SendDetectionResultToRobot(const DetectionResult& detectionResult, int cameraIndex)
{
if (!m_pRobotProtocol) {
LOG_WARNING("[Robot Task] Robot protocol not initialized, cannot send detection result\n");
return;
}
// 准备多目标数据结构
RobotProtocol::MultiTargetData multiTargetData;
// 检查是否有检测结果
if (detectionResult.positions.empty()) {
LOG_INFO("[Robot Task] No objects detected, sending empty result to robot\n");
// 发送空的多目标数据
multiTargetData.count = 0;
multiTargetData.targets.clear();
if (m_pStatus) {
m_pStatus->OnStatusUpdate("没有检测到目标,发送空的多目标数据给机械臂");
}
return;
}
// 获取检测到的目标位置(已经是机械臂坐标系)
const auto& positions = detectionResult.positions;
multiTargetData.count = static_cast<uint16_t>(positions.size());
// 直接使用已经转换好的机械臂坐标
for (size_t i = 0; i < positions.size(); i++) {
const GrabBagPosition& pos = positions[i];
// 直接使用已转换的坐标数据
RobotProtocol::TargetPosition robotTarget;
robotTarget.x = pos.x; // 已转换的X轴坐标
robotTarget.y = pos.y; // 已转换的Y轴坐标
robotTarget.z = pos.z; // 已转换的Z轴坐标
robotTarget.rz = pos.yaw; // Yaw角
// 添加到多目标数据
multiTargetData.targets.push_back(robotTarget);
}
// 发送多目标数据给机械臂使用相机ID从1开始编号
int result = m_pRobotProtocol->SetMultiTargetData(multiTargetData, cameraIndex);
LOG_INFO("[Robot Task] SetMultiTargetData result: %d for camera ID: %d\n", result, cameraIndex);
if (m_pStatus) {
if (result != SUCCESS) {
m_pStatus->OnStatusUpdate(QString("发送多目标坐标给机械臂失败相机ID: %1").arg(cameraIndex).toStdString());
} else {
m_pStatus->OnStatusUpdate(QString("发送多目标坐标给机械臂成功相机ID: %1").arg(cameraIndex).toStdString());
}
}
}
2025-06-08 12:48:04 +08:00
// 实现配置改变通知接口
void GrabBagPresenter::OnConfigChanged(const ConfigResult& configResult)
{
LOG_INFO("Configuration changed notification received, reloading algorithm parameters\n");
// 更新调试参数
m_debugParam = configResult.debugParam;
// 重新初始化算法参数
int result = InitAlgorithmParams();
if (result == SUCCESS) {
LOG_INFO("Algorithm parameters reloaded successfully after config change\n");
if (m_pStatus) {
m_pStatus->OnStatusUpdate("配置已更新,算法参数重新加载成功");
}
} else {
LOG_ERROR("Failed to reload algorithm parameters after config change, error: %d\n", result);
if (m_pStatus) {
m_pStatus->OnStatusUpdate("配置更新后算法参数重新加载失败");
}
}
}
// 根据相机索引获取调平参数
SSG_planeCalibPara GrabBagPresenter::_GetCameraCalibParam(int cameraIndex)
{
// 查找指定相机索引的调平参数
for (const auto& cameraParam : m_cameraCalibParams) {
if (cameraParam.cameraIndex == cameraIndex) {
SSG_planeCalibPara calibParam;
// 根据isCalibrated标志决定使用标定矩阵还是单位矩阵
if (cameraParam.isCalibrated) {
// 使用实际的标定矩阵
for (int i = 0; i < 9; i++) {
calibParam.planeCalib[i] = cameraParam.planeCalib[i];
calibParam.invRMatrix[i] = cameraParam.invRMatrix[i];
}
calibParam.planeHeight = cameraParam.planeHeight;
LOG_INFO("Using calibrated parameters for camera %d\n", cameraIndex);
LOG_DEBUG(" Plane height: %.3f\n", calibParam.planeHeight);
LOG_DEBUG(" Plane calibration matrix: [%.3f, %.3f, %.3f; %.3f, %.3f, %.3f; %.3f, %.3f, %.3f]\n",
calibParam.planeCalib[0], calibParam.planeCalib[1], calibParam.planeCalib[2],
calibParam.planeCalib[3], calibParam.planeCalib[4], calibParam.planeCalib[5],
calibParam.planeCalib[6], calibParam.planeCalib[7], calibParam.planeCalib[8]);
} else {
// 使用单位矩阵(未校准状态)
double identityMatrix[9] = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
for (int i = 0; i < 9; i++) {
calibParam.planeCalib[i] = identityMatrix[i];
calibParam.invRMatrix[i] = identityMatrix[i];
}
calibParam.planeHeight = -1.0; // 使用默认高度
LOG_INFO("Camera %d is not calibrated, using identity matrix\n", cameraIndex);
}
return calibParam;
}
}
// 如果没有找到指定相机的参数,返回单位矩阵和默认高度
LOG_WARNING("Camera %d calibration parameters not found, using identity matrix and default height\n", cameraIndex);
SSG_planeCalibPara defaultCalibParam;
// 设置单位矩阵
double identityMatrix[9] = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
for (int i = 0; i < 9; i++) {
defaultCalibParam.planeCalib[i] = identityMatrix[i];
defaultCalibParam.invRMatrix[i] = identityMatrix[i];
}
// 设置默认平面高度
defaultCalibParam.planeHeight = -1.0;
return defaultCalibParam;
}